
Aspects And Use Cases
Preserving Use Cases in Code and OOram

Use Cases Preserved in Code

Thanks to Aspects

-modularizing use cases: Use-Case modularity problem -

-similarly tackling with abstractions:

demonstration on aspect refactoring of object-oriented patterns

-peer use cases: symmetric aspect-oriented programming

-use cases behind themes

-handling include relation

-extend relation: asymmetric aspect-oriented programming

-aspects as roles collaborations: presenting on OOram

Agenda

AOSD via Use Cases
 Ivar Jacobson - the one who first came with this idea in 2003

Jacobson, I., Ng, P.: Aspect-Oriented Software Development with Use Cases.

Addison Wesley Professional (2004), ISBN 0-321-26888-1.

Use-case modularity problem

Prebrané z https://sparxsystems.com/images/screenshots/UCLogin.gif

Previously unsupported in analytical models and in

implementational environments

EASILY representable with aspect-oriented programming

- solved by AOP programming language

-moved to implementation level

Prebrané z Bc. Pavol Michalco: PRÍPADY POUŽITIA A TÉMY V PRÍSTUPE THEME/DOC

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf

Source: Cockburn, A.. Writing Effective Use Cases.Addison-Wesley, 2001.

Similarly Tackling With Abstractions

Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java and

AspectJ,” in Proc. of 17th ACM SIGPLAN

Conference on Object-Oriented Programming,

Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM,

2002, pp. 161–173.

Similarly Tackling With Abstractions
Example:

 Observer Pattern

-adaptable to various contexts

 => SUPPORTING REUSE

ABSTRACTION:

Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java and

AspectJ,” in Proc.

of 17th ACM SIGPLAN Conference on Object-

Oriented

Programming, Systems, Languages, and

Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM,

2002, pp. 161–173.

Similarly Tackling With Abstractions

Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java and AspectJ,” in Proc. of 17th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161–173.

Similarly Tackling With Abstractions

DIFFERENT CONTEXTS

Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java and AspectJ,” in Proc. of 17th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161–173.

TAKING
OVER/PLAYING THE
ROLES

Peer Use Cases

Separation of concerns can be problematic in peer/extension use cases

PEER USE CASES: Use cases without binding between each other

-> independent of each other

 -> can be processed in paralell

 -> have an affect on shared/common entity

Collaboration diagrams:

Zdroje z Bc. Pavol Michalco: PRÍPADY POUŽITIA A TÉMY V PRÍSTUPE THEME/DOC

Collaboration diagram:

Remove goods from warehouse

Collaboration diagram: Accounting the purchase

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf

Use case:

Dynamically extending class

 class VerticePair {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

 getX() { return this.x; }

 getY() { return this.y; }

 }

var verticePair = new VerticePair(5, 6);

var newX = verticePair.x;

console.log(newX); //newX //(or) //to prints newX

3. Extending class dynamically
-possibly with new features… that can be then evolved independently

VerticePair.prototype.checkPoint = function() { if (this.x > 2) { throw new Error('Coordinate X is greater!');} }

verticePair.checkPoint();

1. Declaring class

2. Instantiating class

4. Using the extension

Prototype-based programming

Solution to Peer Use Cases:

 Intertype Declaration
-we create use case slice…
 …containing only specifics for this

 use case (Accounting the

` purchase in Figure)

Zdroje z Bc. Pavol Michalco: PRÍPADY POUŽITIA A TÉMY V PRÍSTUPE THEME/DOC

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf

Use Cases Behind Themes
Example taken from: http://www2.fiit.stuba.sk/~vranic/

Use Cases

Behind

Themes

Example taken from: http://www2.fiit.stuba.sk/~vranic/

Are Use Cases and Themes

the Same?
Transformation from the Themes/UML to use cases and vice versa

Extensive similarities

- aspect-oriented decomposition

- relationship to functional decomposition

 -crosscutting extend relationship

-functional decomposition as chain include relationship

 - similar identification (of themes/use cases)

 -theme generalization/creating abstract use case

Differences

- lack of actors in themes

- naming conventions

- lower level character of some themes

-directly applied in the majority of cases

Use Cases
Themes

-easily explainable
-hard to understand, requirements are needed

-not any functionality
-can represent any functionality

 (only holds for initial phase of their identification)

Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

-lack direct description

-rather textual

Example:

 Store Management
- Requirements

Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

Themes/DOC - Views

Basic view

Crosscutting view
Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

Transformation from

Theme UML to Use Cases
 1. Create a use case for each theme. Identify actors in requirements..

 2. Create an extend relationship for each crosscut relationship found in the crosscutting view

preserving its direction.

 3. Consider splitting themes. Identify grouped themes in individual theme views (both the existing

ones and those obtained in step 1). Consider transforming each theme–subtheme relationship into

an include relationship or into a generalization relationship if the theme and subtheme

conceptually represent the same theme. Deciding not to transform the subtheme means deciding

its functionality will be an integral part of the existing use case possibly as a separate flow.

 4. Consider unifying themes. Identify unified themes in the history of the operations performed

upon the theme model if it is available. Consider transforming unified themes into generalizations.

 5. Consider the granularity of the obtained use cases and restructure them as necessary by

including too low level use cases as flows of regular ones.

 6. If not resolved by previous steps, resolve the postponed relationships as include, extend,

generalization, general relationship, or dismiss them.

Source: Vranic, V., Michalco, P.: Are
themes and use cases the same?
Information Sciences and
Technologies, Bulletin of the ACM
Slovakia,
 Special Section on Early Aspects at
AOSD 2010 2(1),66–71 (2010)

Themes→Use Cases

Transformation

1. Create a use case for each theme. Identify

actors in requirements. ….

Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

1. Create a use case for each theme. Identify

actors in requirements. ….
Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

Themes→Use Cases

Transformation

2. Create an extend relationship for each crosscut

relationship found in the crosscutting view preserving its

direction. ….

Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

Themes→Use Cases

Transformation

Themes→Use Cases

Transformation

 3. Consider splitting themes. Identify grouped themes in individual

theme views (both the existing ones and those obtained in step 1).

Consider transforming each theme–subtheme relationship

into an include relationship or into a generalization relationship if the

theme and subtheme conceptually represent the same theme. Deciding

not to transform the subtheme means deciding its functionality will be an

integral part of the existing use case possibly as a separate flow.

Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

Themes→Use Cases

Transformation

3. Consider splitting themes. Identify grouped

themes in individual theme views (both the

existing ones and those obtained in step 1).

Consider transforming each theme–subtheme relationship into

an include relationship or into a generalization relationship if

the theme and subtheme conceptually represent the same

theme. Deciding not to transform the subtheme means deciding

its functionality will be an integral part of the existing use case

possibly as a separate flow.

Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

Getting include relationship
Inclusion

Themes→Use Cases

-generalization

creating abstract use case

Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

 4. Consider unifying themes. Identify unified

themes in the history of the operations performed upon the

theme model if it is available. Consider transforming unified

themes into generalizations. ….

generalization

Transformation From Use

Cases to Themes/UML
 1. Identify themes by transforming each use case not involved in a generalization into a theme and

transforming each generalization among use cases into unified themes. Optionally rename themes by

shortening the corresponding use case names. Drop actors.

 2. Create the crosscutting view by transforming each extend relationship between use cases into a

crosscutting relationship between the corresponding themes preserving its direction.

 3. Create the individual view by transforming each include relationship between use cases into a theme–

subtheme relationship preserving its direction. Derive the data entities the theme operates on from the

use case flows and attach them to the corresponding themes.

 4. Transform all requirements use cases refer to into requirements in the theme model. Transform each

use case to requirement relationship into a relationship between the corresponding theme and

requirement.

 5. Derive the theme–relationship view by including all the themes in the crosscutting view and

identifying shared requirements. Transform each unspecified dependency between use cases into a

postponed relationship between the corresponding themes preserving its direction.

Source: Vranic, V., Michalco, P.: Are
themes and use cases the same?
Information Sciences and
Technologies, Bulletin of the ACM
Slovakia,
 Special Section on Early Aspects at
AOSD 2010 2(1),66–71 (2010)

Equivalence

Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
 Special Section on Early Aspects at AOSD 2010 2(1),66–71 (2010)

Handling Include

Relationship From

Use Cases

Example taken from: http://www2.fiit.stuba.sk/~vranic/

Example taken from: http://www2.fiit.stuba.sk/~vranic/

Handling Include Relation

From Use Cases
In themes: individual views of

theme-subtheme relationship with

preserving its direction

Grouped themes/

subthemes
-resemble include relationship

between use cases.

As concern that

do not know about

Place An Order

concern

Some kind

of weaving

Example taken from: http://www2.fiit.stuba.sk/~vranic/

Example taken from: http://www2.fiit.stuba.sk/~vranic/

Handling Extend

Relationship From

Use Cases

Example taken from: http://www2.fiit.stuba.sk/~vranic/

Example taken from: http://www2.fiit.stuba.sk/~vranic/

After Step 4:

Example taken from: http://www2.fiit.stuba.sk/~vranic/

Object-Oriented

Implementation

Example taken from: http://www2.fiit.stuba.sk/~vranic/

Aspect-Oriented

Implementation

Peer Use Cases

Symmetric Aspect-Oriented Modularization

Use Case Extending Another
Asymmetric Aspect-Oriented Modularization

Use Cases Preserved in Code

Thanks to Aspects:

OORam: Object-Oriented Role

Analysis And Modeling

Source: Reenskaug, Trygve; P. Wold; O. A. Lehne (1996). Working with Objects:

The OOram Software Engineering Method. Manning/Prentice Hall.

ROLE MODELS Designed for reuse

Synthesis + Ensemble of classes designed for subclassing

Representation as

Structure of

Interacting objects

OBJECT-ORIENTATION

Common class abstraction

 (can be perceived as entity relation modelling)

KEY ABSTRACTIONS

Type abstraction

 (interfaces, externa properties of objects)

Role abstraction

 (structure and activities in patterns of interacting objects)

-beneficially applicable

 in context of frameworks

=> permits inheritance of

 system properties:

 -behavior

 -constraints

 Permits inheritance of

 object properties

 Developed by Trygve Reenskaug (MVC pattern), Taskon

 To describe complex software systems (software product lines fall within this

category)

 For requirements supporting rapid construction of specialized software

OORam: Object-Oriented Role

Analysis And Modeling

Capturing the synergy of particular pattern of the interdependent parts

 their value (the value of a system) is greater

 than the sum of the values of its (interdependent) parts

Abstractions for Concerns

Separation and Reuse

Source: Reenskaug, Trygve; P.

Wold; O. A. Lehne (1996). Working

with Objects: The OOram Software

Engineering Method.

Manning/Prentice Hall.

Type abstraction

 (interfaces, externa properties of objects)

Role abstraction

 (structure and activities

 in patterns of interacting

objects)

Common class abstraction

 (can be perceived as entity relation modelling)

Type abstraction

Abstractions for Concerns

Separation and Reuse

Type

 Implementation-interdependent description of a set of objects

- which share external properties (set of messages to understand)

-organized in type hierarchy

 subtype  → supertype
Liskov’ Principle: all properties

inherited/exhibits all messages

 + introduces new one

Reusable interfaces – used to expose functionality of components

 Reusable components (encapsulated + hidden implementation details)

 applicable in different contexts

Class abstraction

Abstractions for Concerns

Separation and Reuse

Class

 A set of objects sharing common implementation

-program controlling class instances == the properties of a set of objects

-meaning in programming:

Liskov’ Principle: all code inherited/exhibits all messages

 + introduces or modified new methods and object

variables

Reusable class libraries
 Reuse through application of classes

-organized in class hierarchy

 subclass  → superclass

– allows to share concepts of code + supports reusable code

Source: Reenskaug, Trygve; P.

Wold; O. A. Lehne (1996). Working

with Objects: The OOram Software

Engineering Method.

Manning/Prentice Hall.

Role abstraction

Abstractions for Concerns

Separation and Reuse

Use Cases = Activities = Functionality realized by

 patterns of collaborating objects

 Task conducted by set of associated and cooperating objects

- each role represents single object doing certain activities

Activity

In Role model

- such role represents only related object properties to these activities

 Object identity is preserved => Object interaction patterns are preserved

Role
 Partial description/specification of corresponding object

[, partial description of corresponding class]

In Role model

- describes how patterns of objects perform specific task

Describes all static and dynamic properties of framework

Source: Reenskaug, Trygve; P.

Wold; O. A. Lehne (1996). Working

with Objects: The OOram Software

Engineering Method.

Manning/Prentice Hall.

Abstractions for Concerns

Separation and Reuse

Understanding complex systems
 -good to separate concerns

-too complex whole

Area of concern => objects playing roles

 within its context

SELECTING DESCRIBING

Source: Reenskaug, Trygve; P. Wold; O.

A. Lehne (1996). Working with Objects:

The OOram Software Engineering

Method. Manning/Prentice Hall.

DIVIDE AND CONQUER

Role model synthesis
System derivation:

Composition from base systems

CONTROLLABLY PRESERVING OBJECT

PATTERNS AND ACTIVITIES

-> SYNTHESIZING REUSABLE COMPONENTS

As role

models

Each plays

one or more roles

Interdependencies

between subjects
As Integration of each object behavior when playing multiple roles:

Not bound to

 single model

Managed subject interdependencies by objects

Source: Reenskaug, Trygve; P. Wold; O. A. Lehne

(1996). Working with Objects: The OOram Software

Engineering Method. Manning/Prentice Hall.

Many View of One Model

Source: Reenskaug, Trygve; P. Wold; O. A. Lehne

(1996). Working with Objects: The OOram Software

Engineering Method. Manning/Prentice Hall.

1. Collaboration View

2. Scenario View

3. Method View

-to show static and dynamic properties of the system

Example: Each user has own instance of Invocation role

Holds user set of available services,

holds the user set of services

Invocation is capable to

respond on client

request with Service object

Collaboration View

1. Selects and Initializes Service object first

2. Gives Service reference to the client

-collaboration structure incorporating system roles

1. Roles

2. Communication

 structure

Consists of

Communication path => line

=> superellipse

Port to send messages => small

 circle

Role can send messages

with its collaborator

Many relation => circle with

 concentric circle

Example: invocation can handle many clients

Archetypical role => dashed line Example: archetypical client

Source: Reenskaug, Trygve; P. Wold; O. A.

Lehne (1996). Working with Objects: The

OOram Software Engineering Method.

Manning/Prentice Hall.

Port
 Abstraction of variable with

possible mapping to program variable

Scenario View
-interaction of messages as trace of system activity

Roles
-horizontally

Message

interactions
-horizontal arrows

(from sender role

 to receiver)

Source: Reenskaug, Trygve; P.

Wold; O. A. Lehne (1996). Working

with Objects: The OOram Software

Engineering Method.

Manning/Prentice Hall.

Method View
-to perceive how received message is handled by particular role

Source: Reenskaug, Trygve; P.

Wold; O. A. Lehne (1996). Working

with Objects: The OOram Software

Engineering Method.

Manning/Prentice Hall.

Internal

 operations
=> pseudocode

Sent messages
=> Explicitly shown

Example: establishing connection with POTS Service:

Role Model Synthesis

Source: Reenskaug, Trygve; P. Wold; O. A. Lehne

(1996). Working with Objects: The OOram Software

Engineering Method. Manning/Prentice Hall.

Each plays one or more roles

As role

models

Role in one model plays

environment role in another

models

Synthesizing Reusable

Components 1. Specialization

 - generalization
General concept is specialized

 (inheritance) in derived model

Example: fraction -> Ohm’s law

Source: Reenskaug, Trygve; P. Wold; O. A. Lehne

(1996). Working with Objects: The OOram Software

Engineering Method. Manning/Prentice Hall.

-all properties

(static dynamic)

 are preserved

+new features

-arrows:

 mapping

 roles

SINGLE SYNTHESIS OPERATION:

2. Composition – on the

 same abstraction level
-composition of related models into

 composite derived model

Example: composite fraction

- double synthesis of fraction model

3. Aggregation

Synthesizing

Reusable

Components

-encapsulation – invisibility of internal construction

 from the outside

- ENABLES REUSE

Example:

 numerator role -> role encapsulating another

 instance of fraction model

1. SIMPLE ROLE → ROLE ENCAPSULATING

 SEPARATE ROLE

 STRUCTURE

Replacement

-> Application to different contexts

The same as composition from

previous example, but ENCAPSULATED

 = INVISIBLE TO OUTHER

 (aFRACTION) MODEL

Previously:

 numerator role

Source: Reenskaug, Trygve; P. Wold; O. A. Lehne

(1996). Working with Objects: The OOram Software

Engineering Method. Manning/Prentice Hall.

Seamless Brigade to

Implementation

Many-to-many

relationships

ABSTRACTIONS

 related through

 common concepts

 of objects

Constructing product classes

by subclassing the framework classes

Application: OOram

Source: Reenskaug, Trygve; P. Wold; O. A. Lehne

(1996). Working with Objects: The OOram Software

Engineering Method. Manning/Prentice Hall.

Application: OOram
1. Synthesis 1: Mapping to corresponding model - SPECIALIZATION

Default behavior of base model is preserved

1. Synthesis 2: Mapping to corresponding model - SPECIALIZATION

Example: accessing caller POTS by Caller

Example: accessing called POTS service

(user service) by caller POTS

Synthesis

Reusing Default Behavior

Through Specialization

Source: Reenskaug,

Trygve; P. Wold; O. A.

Lehne (1996). Working with

Objects: The OOram

Software Engineering

Method. Manning/Prentice

Hall.

Application: OOram
Incorporating Call Forward Service

Caller can terminating search by

providing Called POTS service

Caller can implement another forwarding step by another provided Call Forward Service

Source: Reenskaug,

Trygve; P. Wold; O. A.

Lehne (1996). Working with

Objects: The OOram

Software Engineering

Method. Manning/Prentice

Hall.

Elements in themes can be perceived as roles. Roles are known from:

Elements in themes can be perceived as roles.

As role

models

Each plays

one or more roles

Perceiving Aspects as

Role Collaborations

/Elements in themes

Concerns/Themes/

Elements in themes can be perceived as roles.

Perceiving Aspects as

Role Collaborations

Source: Vranić, V., Laslop, M.: Aspects and
Roles in Software Modeling:
A Composition Based Comparison. Computer
Science and Information Systems,
Vol. 13, No. 1, 199–216. (2016),
https://doi.org/10.2298/CSIS151207065V

TRANSFORMATION FROM THEME/UML TO OORAM

Decomposing whole to units covered by specific aspect or view.

View as role

Role extending object functionality:

-to be applied in other contexts

-perform corresponding functionality

-take effect into inherent structure

Role based approaches to software development

Aspect-oriented programming

Extensions to object-

oriented programming

Both have capability to be added, removed and replaced at runtime

Source: Vranić, V., Laslop,
M.: Aspects and Roles in
Software Modeling:
A Composition Based
Comparison. Computer
Science and Information
Systems,
Vol. 13, No. 1, 199–216.
(2016),
https://doi.org/10.2298/CSIS1
51207065V

Theme/UML And OOram

Relations

Theme/UML

Theme/UML

Source: Vranić, V., Laslop, M.: Aspects
and Roles in Software Modeling:
A Composition Based Comparison.
Computer Science and Information
Systems,
Vol. 13, No. 1, 199–216. (2016),
https://doi.org/10.2298/CSIS151207065V

Source: Vranić, V., Laslop, M.: Aspects and Roles in Software Modeling:
A Composition Based Comparison. Computer Science and Information Systems,
Vol. 13, No. 1, 199–216. (2016), https://doi.org/10.2298/CSIS151207065V

Source: Vranić, V., Laslop, M.: Aspects and Roles in Software Modeling:
A Composition Based Comparison. Computer Science and Information Systems,
Vol. 13, No. 1, 199–216. (2016), https://doi.org/10.2298/CSIS151207065V

OOram

Source: Vranić, V., Laslop, M.: Aspects
and Roles in Software Modeling:
A Composition Based Comparison.
Computer Science and Information
Systems,
Vol. 13, No. 1, 199–216. (2016),
https://doi.org/10.2298/CSIS151207065V

OOram

Source: http://www2.fiit.stuba.sk/~vranic/

Are preserved use cases in code enough?

Is traceability enough?

Source: http://www2.fiit.stuba.sk/~vranic/

References
 OOram: Reenskaug, Trygve; P. Wold; O. A. Lehne (1996). Working with Objects: The OOram Software

Engineering Method. Manning/Prentice Hall.

 Use Cases: Cockburn, A.. Writing Effective Use Cases.Addison-Wesley, 2001

 Abstractions analogies in patterns: J. Hannemann and G. Kiczales, “Design pattern implementation in

Java and AspectJ,” in Proc. of 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161–173.

 Application of Themes approach: Bc. Pavol Michalco: PRÍPADY POUŽITIA A TÉMY V PRÍSTUPE
THEME/DOC

 D. Stein. Join Point Designation Diagrams: A Visual Design Notation for Join Point Selections in
Aspect-Oriented Software Development. PhD. thesis, Universität Duisburg-Essen, 2010.

 E. Baniassad and S. Clarke, "Theme: an approach for aspect-oriented analysis and
design," Proceedings. 26th International Conference on Software Engineering, Edinburgh, UK,
2004, pp. 158-167, doi: 10.1109/ICSE.2004.1317438.

 Vranić, V., Laslop, M.: Aspects and Roles in Software Modeling: A Composition Based Comparison. Computer
Science and Information Systems, Vol. 13, No. 1, 199–216. (2016), https://doi.org/10.2298/CSIS151207065V

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf
https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf
https://duepublico2.uni-due.de/receive/duepublico_mods_00024134
https://archive.org/details/aspectorientedan0000clar
https://archive.org/details/aspectorientedan0000clar

 Bystrický, M., Vranic, V.: Preserving use case flows in source code. In: Proceedings of

4th East- ´ ern European Regional Conference on the Engineering of Computer Based

Systems, ECBSEERC 2015. IEEE, Brno, Czech Republic (2015)

 Hanenberg, S., Stein, D., Unland, R.: Roles from an aspect-oriented perspective. In:

Proceedings of VAR’05: Views, Aspects and Roles Workshop, ECOOP 2005. Glasgow, UK

(2005)

 Hanenberg, S., Unland, R.: Roles and aspects: Similarities, differencies, and synergetic

potential. In: Proceedings of 8th International Conference on Object-Oriented

Information Systems, OOIS 2002. Montpellier, France (Sep 2002)

 Reenskaug, T., Coplien, J.O.: The DCI architecture: A new vision of object-oriented

programming. http://www.artima.com/articles/dci_vision.html (3 2009)

References

Aspects And Roles

a) Unification of aspects and roles

b) Modeling aspects with roles

c) Role systems as special kind of aspect-oriented systems

d) Similarities between role based and aspect-oriented system composition/decomposition

Theme/UML and OOram -> COMPOSITION PATTERNS

Symmetries

a) Element symmetry b) Relationship asymmetry

AspectJ - asymmetric

	Snímka 1: Aspects And Use Cases
	Snímka 2
	Snímka 3: AOSD via Use Cases
	Snímka 4
	Snímka 5
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10: Peer Use Cases
	Snímka 11
	Snímka 12: Dynamically extending class
	Snímka 13: Solution to Peer Use Cases: Intertype Declaration
	Snímka 14
	Snímka 15
	Snímka 16: Are Use Cases and Themes the Same?
	Snímka 17: Example: Store Management - Requirements
	Snímka 18: Themes/DOC - Views
	Snímka 19: Transformation from Theme UML to Use Cases
	Snímka 20
	Snímka 21
	Snímka 22
	Snímka 23
	Snímka 24
	Snímka 25: ThemesUse Cases -generalization
	Snímka 26: Transformation From Use Cases to Themes/UML
	Snímka 27: Equivalence
	Snímka 28: Handling Include Relationship From Use Cases
	Snímka 29
	Snímka 30
	Snímka 31
	Snímka 32
	Snímka 33
	Snímka 34
	Snímka 35
	Snímka 36: Peer Use Cases
	Snímka 37: OORam: Object-Oriented Role Analysis And Modeling
	Snímka 38
	Snímka 39: Abstractions for Concerns Separation and Reuse
	Snímka 40: Abstractions for Concerns Separation and Reuse
	Snímka 41: Abstractions for Concerns Separation and Reuse
	Snímka 42: Abstractions for Concerns Separation and Reuse
	Snímka 43: Abstractions for Concerns Separation and Reuse
	Snímka 44: Interdependencies between subjects
	Snímka 45: Many View of One Model
	Snímka 46: Collaboration View
	Snímka 47: Scenario View
	Snímka 48: Method View
	Snímka 49: Role Model Synthesis
	Snímka 50: Synthesizing Reusable Components
	Snímka 51
	Snímka 52: Seamless Brigade to Implementation
	Snímka 53: Application: OOram
	Snímka 54: Application: OOram
	Snímka 55: Reusing Default Behavior Through Specialization
	Snímka 56: Application: OOram
	Snímka 57
	Snímka 58: Perceiving Aspects as Role Collaborations
	Snímka 59
	Snímka 60: Theme/UML And OOram Relations
	Snímka 61
	Snímka 62
	Snímka 63
	Snímka 64
	Snímka 65
	Snímka 66
	Snímka 67
	Snímka 68
	Snímka 69: References
	Snímka 70: References
	Snímka 71: Aspects And Roles
	Snímka 72: Symmetries

