Aspects And Use Cases

Preserving Use Cases in Code and OOram

Use Cases Preserved in Cod

Thanks to Aspec
Agenda

-modularizing use cases: Use-Case modularity problem -
-similarly tackling with abstractions:

demonstration on aspect refactoring of object-oriented patterns
-peer use cases: symmetric aspect-oriented programming
-use cases behind themes
-handling include relation
-extend relation: asymmetric aspect-oriented programming
-aspects as roles collaborations: presenting on OOram

AOSD via Use Cases

» lvar Jacobson - the one who first came with this idea in 2003

Jacobson, |., Ng, P.: Aspect-Oriented Software Development with Use Case
Addison Wesley Professional (2004), ISBN 0-321-26888-1.

Use-case modularity proble
Previously unsupported in analytical models and
/ / implementational environments
% E”‘f”“ EASILY representable with aspect-oriented progra
Customer | - solved by AOP programming language
Shop

Prebrané z https://sparxsystems.com/images/screenshots/UCLogin.gif

-moved to implementation level

Visual Paradigm for UML Co

<Vykonaj Transakcie>
Extension Points
krok 2 zakl. toku

<Actor=>

mmercial use]

<<Extend>>

Loguj poZiadavky

se] <<use case>> d

Vypis tétovanie do pokl. bloku

Flows Flows
{basic} Nauctovanie nakupu {alt} Zapisanie do bloku - zrusené
{alt} ZruSenie nadctovanej polozky {after TlaéZruSenaPoloZka yields Uspedne zruSena poloZka)
{alt} PoloZka na zruSenie neexistuje {alt}- Zapisanie do bloku - nal¢tované
{alt} Tovar neexistuje {after TlaéNauétovanaPolozka yields Uspe$neNauétovanaPolozka}
Extension Points | L {alt}- Zapisanie do bloku - suma
Potvrdenie zru§enia poloky <<estend>> | {after TlatSumaj

=4'. krolf Eoku Zr}xsenl? nauctovanej polozky Extension Pointcuts
lec - hauctovana polozka TlaéNatétovanaPolozka

= 5. krok zakl. toku = Nalétuj ndkup.Tiaé-natétovana polozka
Tiat - zrudena polozka TlaéZru§enaPoloZka

= 4. krok toku ZruSenie nauctovanej polozky

2 = Nauétuj nakup.Tlac-zruSena polozka
Tlac - suma = 7. krok zakl. toku

TlatSuma
= Nauétuj nakup.Tlaé-suma

Prebrané z Bc. Pavol Michalco: PRIPADY POUZITIA A TEMY V PRISTUPE THEME/DOC

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf

Similarly Tackling With Abstractions

overall project Q

advertise order mvoice

/R Summa l'.‘. ““,hite”
Goals

Al Setup

promotion

reference
promouon

. (44 2
)| monitor place create || send User b
promotion order mvoice || mvoice
Jy Goals

identify register identify 1dentify Subfunctions
promotion product custome

Source: Cockburn, A.. Writing Effective Use Cases.Addison-Wesley, 2001.

A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

Similarly Tackling With Abstr

01 public abstract aspect ObserverProtocol {

02

03 protected interface Subject { }

04 protected interface Observer { }

05

06 private WeakHashMap perSubjectObservers;07
08 protected List getObservers(Subject s) ({
09 if (perSubjectObservers == null) {

10 perSubjectObservers = new WeakHashMap();
11 }

12 List observers =

13 (List)perSubjectObservers.get(s);

14 if (observers == null) {

15 observers = new LinkedList();

16 perSubjectObservers.put(s, observers);
17 }

18 return observers;

19 }

20

21 public void addObserver(Subject s,Observer o) {
22 getObservers(s).add(o);

23 }

Example:
Observer Pat

ABSTRACTION:

-adaptable to various co
=> SUPPORTING REUS

Source: J. Hannemann and G. Kiczal
“Design pattern implementation
AspectJ,” in Proc. of 17th ACM S
Conference on Object-Orient
Systems, Languages, and Ap
OOPSLA 2002. Seattle, W
2002, pp. 161-173.

Similarly Tackling With Abstr

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

bublic void removeObserver (Subject s,Observer o) {

getObservers(s).remove(0);

}

abstract protected pointcut
subjectChange(Subject s);

abstract protected void
updateObserver (Subject s, Observer o);

after(Subject s): subjectChange(s) {
Iterator iter = getObservers(s).iterator();
while (iter.hasNext()) {
updateObserver(s, ((Observer)iter.next()));

}
}
}

Figure 2: The generalized ObserverProtocol aspect

Source: J. Hannemann and G. Ki
“Design pattern implementation i
AspectJ,” in Proc.
of 17th ACM SIGPLAN Conference
Oriented
Programming, Systems, Lang
Applications,

OOPSLA 2002. Seattle,
2002, pp. 161-173.

Similarly Tackling With Abstr

01 public aspect ColorObserver extends ObserverProtocol { 16 public aspect CoordinateObserver extends
02 17 ObserverProtocol {
03 declare parents: Point implements Subject; 18
04 declare parents: Line implements Subject; 19 declare parents: Point implements Subject;
05 declare parents: Screen implements Observer; 20 declare parents: Line implements Subject;
06 21 declare parents: Screen implements Observer;
07 protected pointcut subjectChange(Subject s): 22
08 (call(void Point.setColor(Color)) || 23 protected pointcut subjectChange(Subject s):
09 call(void Line.setColor(Color))) && target(s); 24 (call(void Point.setX(int))
10 25 || call(void Point.setY(int))
11 protected void updateObserver(Subject s, 26 || call(void Line.setPl(Point))
12 Observer o) { 27 || call(void Line.setP2(Point))) && target(s);
13 ((Screen)o) .display("Color change."); 28
14 } 29 protected void updateObserver(Subject s,
15} 30 Observer o) {
31 ((Screen)o).display("Coordinate change.");
32 }
33 }

Figure 3. Two different Observer instances.

DIFFERENT CONTEXTS
ource: J. Hannemann and G. Kiczales,

esign pattern implementation in Java and AspectJ,” in Proc. of 17th ACM SIGPLAN Confe
Object-Oriented Programming, Systems, Languages, and Applications,
PSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161-173.

01 public aspect ScreenObserver
02 extends ObserverProtocol {
03
TAKI N G 04 declare parents: Screen implements Subject;
OVE R/P LAYI NG TH E 05 declare parents: Screen implements Observer;
06
ROLES 07 protected pointcut subjectChange(Subject s):
08 call(void Screen.display(String)) && target(s);
09
10 protected void updateObserver (
11 Subject s, Observer o) {
12 ((Screen)o) .display("Screen updated.");
13}
14 }

. Figure 4. The same class can be Subject and Observer
Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java and AspectJ,” in Proc. of 17th ACM SIGPLAN C
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161-173.

Peer Use Cases

PEER USE CASES: Use cases without binding between each other
-> independent of each other
-> can be processed in paralell

-> have an affect on shared/common entity

Separation of concerns can be problematic in peer/extension use cases

Collaboration diagrams:

- . S — . - s
odstran tavar A - = = - - 0dstréfi tovar \
z0 skladu % z0 skladu /
o Tee A I ST e ——" . s S ERCIR 2
natéty nakup < = === = = {_navetujnakup 7

Collaboration diagram: Accounting the purc

e Y Collaboration diagram:
N i, IOIRHG_n Remove goods from warehouse o i TR .
_____ « hauttujnakup !
zdroj / \ radenie T - =
Tovar SpravaSkladu _ \ S
odstran() odstranTovar () ZdTOJ riadenie
vyhladaj () Tovar SpravaPredaja
vyhladaj () pridajNakup()
. . P " . . zvyseniePoctu() identifikaciaPolozky()
je z Bc. Pavol Michalco: PRIPADY POUZITIA ATEMY V PRISTUPE THEME/DOC znizeniePoctu() nauc;uipoll(c)?l;l-\()
Zrusrkfolozku

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf

o

—

S—
T e e m— —

OrderManager

T —

—
___.—--""’

orderProduct)

Product

o

— —
— — — —

~ ~
\ Cancel an Order J

—
— e—— —

— — — —

OrderManager

cancelOrder()

NS

OrderManager

orderProduct()
cancelOrder()

Product

Use case:

Customer

Cancel an Order

Place an Order

Dynamically extending class

1. Declaring class Prototype-based
» class VerticePair { 2. InStantiating ClaSS

» constructor(x,) . . .
(o Y var verticePair = new VerticePair(5, 6);

var newX = verticePair.x;
> this.y =y; console.log(newX); //newX //(or) //to prints n

>}

» this.x = X;

» getX() { return this.x; }

> getY() { retun this.y; } 3. Extending class dynami

>
} -possibly with new features... that can be then evolvedg.c'iep

VerticePair.prototype.checkPoint = function() { if (this.x > 2) { throw new Error(‘Coordinate X i

4, Using the extension

verticePair.checkPoint();

Solution to Peer Use Cases:
Intertype Declaration

-we create use case slice...

...Containing Only SpeCifiCS fOI’ thiS ¥ adigm for UI1L Community Edition [notfor commercial use]
use case (Accounting the “:;“-‘n:f;”
) purchase in Figure)
= Tt A R <<asped>>
-------- 7 Nauctuj nakup - ctuil
''''' { _ rauttujnskup) \) Nauctigaup
------ - = T T o Class Extensions
S Ty C SpravaPredaja Tovar
« einjnskup ! Operations Operations
/ T \ pridajNakup() 2vyseniePoctu()
zdroj riadenie identifikaciaPolozky(znizeniePoctu()
Tovar _SpravaPredaja nauctujPolozku()
vyhladaj () pridajNakup ()
zvy.'aen:!.epoctu() identifikaciaPolozky() ZI’USPO|OZKUO
znizeniePoctu() nauctujPolozku()
zrusPolozku()

droje z Bc. Pavol Michalco: PRIPADY POUZITIA A TEMY V PRISTUPE THEME/DOC

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf

Use Cases Behind Themes

Example taken from: http://wwwz2.fiit.stuba.sk/~vranic/

<<theme>> <<theme>>
shut down the system alarms
Building Room Alarm Alarm
+shutDown(): void $1 .| +shutDown(): void $1 .| +turnOff(): void -id: Integer
-isOn: Boolean

-specialSensor: Boolean

sd Shut down the systerry +turnOn(): void
+turnOff(): void

+hasSpecialSensor(): Sensor

- Building - Room : Alarm
shutDown() > | | | A
| | /
| | /
loop) i | Th%meName("S_ecuritySystem")
shutDown() | : - match[name]
|

4:_'_ —

turnOff() >

shut down the system
Building

o
e] n sd Shut down the systery
I : Building | ‘ : Room ‘ |

<<theme=> <<theme==>
alarms
Room Alarm Alarm
+shutDown(): void q + | +shutDown(): void < +lumOff(): void -id: Integer
-isOn: Boolean

-specialSensor: Boolean

+turnOn(): void
+turnOff(): void
+hasSpecialSensor(): Sensor

hemes

+shutDown(): void

+shutDown(): void

+turnOff(): void

Example taken from: http://www2.fiit.stuba.sk/~vranic/

: Alarm
shutDown(] - T T i
| | /
| |
/ : [ThemeName("SecuritySystem")
shutDown() [l - match[name]
wrnOff ' -
|
|
|
T .
] I 1
P - =~ - P - =~
{ shut down the system) < alarms
Alarm
Building Room Alarm -id: Integer

-isOn: Boolean
-specialSensor: Boolean

+turnOn(): void
+turnOff(): void
+hasSpecialSensor(): Sensor

Are Use Cases and Themes
the Same? Source: Varic, . icalo, P e thermes anc

Special Section on Early Aspects at AOSD 2010 2(1

Transformation from the Themes/UML to use cases and

-directly applied in the majority of cases

Extensive similarities _ Differences

- aspect-oriented decomposition - lack of actors in themes
- relationship to functional decomposition - nhaming conventions
-crosscutting extend relationship - lower level character of some them

-functional decomposition as chain include relationship
- similar identification (of themes/use cases)
-theme generalization/creating abstract use case

Themes -lack direct descrip
Use Cases -hard to understand, requireme

-rather textual ~ -easily explainable -can represent any functionali
-not any functionality (only holds for initial p

10.

. The application will record and maintain the prod-

uct quantity in the stock in the central database.

The storekeeper can remove products from the
database.

The storekeeper can add products into the database.

The storekeeper can change the product quantity in
the database.

The cashier can bill the item by manually entering
the bar code or with a bar code reader.

Only the products recorded in the database can be
billed.

The billed items can be removed from the bill until
it has been closed.

The billed item removal must be approved by a store
manager by entering his authentication data.

The billed items will be printed on the cash desk
bill as they are entered. The bill will consist of the
store name, billed items, information on removed
billed items, the total amount of money to be paid,
and date and time.

The product price can be entered or modified only
by a properly authenticated store manager.

Figure 1: The retail support application require-
ments.

urce: Vranic, V., Michalco, P.: Are themes and use cases the same?
ormation Sciences and Technologies, Bulletin of the ACM Slovakia,
ecial Section on Early Aspects at AOSD 2010 2(1),66—71 (2010) Hon.

Example:
Store Manag

- Requirements

Figure 2: Themes in the retail support applica-

Themes/DOC - Views (=

.RE_
identify-produc
R7

Figure 4: The crosscutting theme view.

Crosscutting v.
Figure 2: Themes in the retail support applica-

tion. Source: Vranic, V., Michalco, P.: Are the

- - Information Sciences and Technologies
I BaS] C VI ew Special Section on Early Aspects at

remove-item

Transformation from

Informati

Theme UML to Use Cases oo

Special Sectio

AOSD 2010 2(1
1. Create a use case for each theme. ldentify actors in requirements..

2. Create an extend relationship for each crosscut relationship found in the crosscutting vie
preserving its direction.

3. Consider splitting themes. Identify grouped themes in individual theme views (both the exi
ones and those obtained in step 1). Consider transforming each theme-subtheme relationship i
an include relationship or into a generalization relationship if the theme and subtheme

conceptually represent the same theme. Deciding not to transform the subtheme means
its functionality will be an integral part of the existing use case possibly as a separate flo

4. Consider unifying themes. Identify unified themes in the history of the operations performe
upon the theme model if it is available. Consider transforming unified themes into generali

5. Consider the granularity of the obtained use cases and restructure them as necessary
including too low level use cases as flows of regular ones.

6. If not resolved by previous steps, resolve the postponed relationships as include,
generalization, general relationship, or dismiss them.

Themes=>U
Transforma

<—uextend»

£extend™ (print Billed Item

oNIC
=0
Figure 2:

hemes in the retwuil support applica-

: Garore Proas
tion.
1. Create a use case for each theme. ldentify ‘ Identify Product

actors in requirements. Storekeepe

Source: Vranic, V., Michalco, P.: Are themes and use cases the same? Record Product Quantity ;
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
Special Section on Early Aspects at AOSD 2010 2(1),66—71 (2010) Change Product Quanti

Manager

ill record and maintain the prod-
stock in the central database.

can remove products from the

1. The application
uct quantity 1

2. The storekee
database.

3. The storekeepe add products into the database.

4. The storekeeper can change the product quantity in
the da.tabzsé

5. The cashier bill the item by manually entering
the bar code or with a bar code reader.

6. Only the products recorded in the database can be
billed.

7. The billed items can be removed from the bill until
it has been closed. E[

8. The billed item removal must be approved by a stor
manager by entering his authentication data.

9. The billed items will be printed on the cash desk
bill as they are entered. The bill will consist of the
store name, billed items, information on removed
billed items, the total amount of money to be paid,
and date and time.

10. The product price can be entered or modified only
by a properly authenticated store manager.

Figure 1: The retail support applil::égun require-
ments.

actors in requirements.

1. Create a use case for each theme. ldentify

urce: Vranic, V., Michalco, P.: Are themes and use cases the same?
ormation Sciences and Technologies, Bulletin of the ACM Slovakia,
ecial Section on Early Aspects at AOSD 2010 2(1),66—71 (2010)

Themes—=>U
Transformat

’ Bill Item
zf:_c_t,s,nd‘f‘ Print Billed Item
Remove Billed ltem - extend»

Cashier ~
wextendn .@
Modify Price ==

0
/\
Manager
Identify Product
Record Product Quantity

Figure 5: Identified use cases and extend relation-
ships.

Themes—->U
4}‘

5

Cashier
Figure 4: The crosscutting theme view. S
2. Create an extend relationship for each crosscut
relationship found in the crosscutting view preserving its
direction. Storekeepe

Source: Vranic, V., Michalco, P.: Are themes and use cases the same?
Information Sciences and Technologies, Bulletin of the ACM Slovakia,
Special Section on Early Aspects at AOSD 2010 2(1),66—71 (2010)

Transformat

Bill ltem mﬁtsnd?}
ﬂﬂxtﬂﬂ’ Print Billed Item

Remove Billed Ite rextends

wextend: .@
Modify Price ==

B o
/\

Manager
ldentify Product
Record Product Q@

Change Product Quanti

Themes—->U
Transformat

Source: Vranic, V., Michalco, P.: Are themes and us
Information Sciences and Technologies, Bulletin of t
Special Section on Early Aspects at AOSD 2010 2(1),66—71 (2010)

2dd-produ

Figure 2: Themes in the retail support applica-

tion. 3 Consider splitting themes. Identify grouped themes in individual
theme views (both the existing ones and those obtained in step 1).
Consider transforming each theme-subtheme relationship
into an include relationship or into a generalization relationship if the
theme and subtheme conceptually represent the same theme. Deciding
not to transform the subtheme means deciding its functionality will be an
integral part of the existing use case possibly as a separate flow. Figure 6: Splitting the themes.

Source: Vranic, V., Michalco, P.: Are themes and u
Information Sciences and Technologies, Bulletin of
Special Section on Early Aspects at AOSD 2010 2(1),

—

=~ .. #includex»

.-""'-1
-y
—“E‘E'—”d 5(_Identify Product
-7
o~
) " wincludex»
Change Product Quantity

Figure 7: Inclusion.

Figure 6: Splitting the themes.

3. Consider splitting themes. Identify groupe

themes in individual theme views (both the Starekeeper

existing ones and those obtained in step 1).

Consider transforming each theme-subtheme relationship into

n include relationship or into a generalization relationship if

he theme and subtheme conceptually represent the same
eme. Deciding not to transform the subtheme means deciding ‘

functionality will be an integral part of the existing use case

ssibly as a separate flow.

4/@(O e 1 NEMes>U

Remove Billed Item extends

e -generaliza
- wextendw .@
Modify Price ==)]
Source: Vranic, V., Michalco, P.: Are themes an

- Information Sciences and Technologies, Bulletin
Add Product Q . .
Special Section on Early Aspects at AOSD 2010 2(

e creating abstract use case
: Remove Produ
Manager éE’EﬂE“_ -
Identify Product Print Billed Item
Storekeepe AN

Record Product ﬂ@ Cashier @ﬂue Eilled@ Add Billed Item

Change Product Quanti generalization }T:{ axtands
Figure 5: Identified use cases and extend relation-

ships. 4. Consider unifying themes. Identify unified

hemes in the history of the operations performed upon the Manager
eme model if it is available. Consider transforming unified
emes into generalizations. Figure 8: Generalization of use cases.

» 1. Identify themes by transforming each use case not involved in a generalization into a the

Transformation From Use @

Informati

Cases to Themes/UML Sovais,

Special Sectio
AOSD 2010 2(1

transforming each generalization among use cases into unified themes. Optionally rename th
shortening the corresponding use case names. Drop actors.

2. Create the crosscutting view by transforming each extend relationship between use cases int
crosscutting relationship between the corresponding themes preserving its direction.

3. Create the individual view by transforming each include relationship between use cases into a
subtheme relationship preserving its direction. Derive the data entities the theme operates on fro
use case flows and attach them to the corresponding themes.

4. Transform all requirements use cases refer to into requirements in the theme model. Transf
use case to requirement relationship into a relationship between the corresponding theme a
requirement.

5. Derive the theme-relationship view by including all the themes in the crosscutting vi
identifying shared requirements. Transform each unspecified dependency between
postponed relationship between the corresponding themes preserving its directio

Equivalence

Table 1: Equivalence of Theme/Doc and use case
modeling mechanisms.

Theme,/Doc Use Case Modeling
base theme peer Use case
requirement brief description/flow

crosscutting theme
grouping theme
grouped theme
unifying theme
unified theme
subtheme

crosscutting relationship
theme—subtheme rel.

theme-requirement rel.

postponed relationships
n/a

extending use case
including use case
included use case
general use case
special use case
inclusion use case
extend relationship
include relationship
use case to requirement
link

any /no relationship
actor

Source: Vranic, V., Michalco, P.: Are theme
Information Sciences and Technologies,
Special Section on Early Aspects at AO

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products is being activated.

3. Customer confirms the product selection and adjusts its quantity.
4. If the product is available, System includes it in the order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,
and confirms the order.

7. Customer can cancel ordering at any time.

8. The use case ends.
Example taken from: http://www2.fiit.stuba.sk/~vranic/

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.
2. UC Search Products is being activated.

3. Customer confirms the product selection and adjusts its quantity.

4. If the product is available, System includes it in the order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,
and confirms the order.

7. Customer can cancel ordering at any time.

8. The use case ends.

public class Ordering {
public void order() {

new ProductSearch().search(product);

rezi) Example taken from: http://wwwa2.fiit.stuba.sk/~

incl
i Place an Order —ssinelude>> Search Products

Customer

Handling Include Re
From Use Cases

In themes: individual views of
theme-subtheme relationship w
preserving its direc

Grouped themes/
subthe

-resemble include
between use ca

UC Place an Order

Basic Flow: Place an Order

<<include>:
1. Customer selects to place an order. 53 i

2. UC Search Products is being activated.

i et - Cust
3. Customer confirms the product selection and adjusts its quantity. usiomer

4. If the product is available, System includes it in the order.
5. Customer continues in ordering further products.
6. Customer chooses the payment method, enters the payment data,

As concern that
and confirms the order.

7. Customer can cancel ordering at any time. . do not know about
8. The use case ends. Some kind Place An Order
of weaving concern

public class Ordering {
public void order() {

new ProductSearch().search(product);

rezi) Example taken from: http://wwwa2.fiit.stuba.sk/~

o Handling Extend

Basic Flow: Place an Order R l t ° h ° F

1. Customer selects to place an order. p

2. UC Search Products is being activated. U C

3. Customer confirms the product selection and adjusts its quantity. S e a S e S
4. If the product is available, System includes it in the order.

5. Customer continues in ordering further products.

6. Customer chooses the payment method, enters the payment data,

and confirms the order.

7. Customer can cancel ordering at any time.
8. The use case ends.

Extension points:
. Checking ProductAvailability: Step 4 Example taken from: http://www2.fiit.stuba.sk/~vranic/

Prezi

UC Place an Order

Basic Flow: Place an Order

1. Customer selects to place an order. Place an Order _s<include>> Search Products
2. UC Search Products is being activated. N
|

3. Customer confirms the product selection and adjusts its quantity.

4. If the product is available, System includes it in the order. Customer <<extend>>
5. Customer continues in ordering further products. :

6. Customer chooses the payment method, enters the payment data, |

and confirms the order.
7. Customer can cancel ordering at any time. Modify the Restock Plan
8. The use case ends.

Extension points:
+ Checking Product Availability: Step 4

UC Modify the Restock Plan
Alternate Flow: Modify the Restock Plan

After the Checking Product Availability extension point of the Place an
Order use case:

1. System checks the available quantity of the product being ordered.
2. If the quantity is below the limit, System adds the quantity under
demand to the restock plan.

3. The flow continues with the step that follows the triggering

@ prea extension point. Example taken from: http://wwwa2.fiit.

UC Place an Order

Basic Flow: Place an Order

1. Customer selects to place an order. Place an Order _s<include>> Search Products
2. UC Search Products is being activated. N
|

3. Customer confirms the product selection and adjusts its quantity.

4. If the product is available, System includes it in the order. Customer <<extend>>
5. Customer continues in ordering further products. :

6. Customer chooses the payment method, enters the payment data, |

and confirms the order.
7. Customer can cancel ordering at any time. Modify the Restock Plan

8. The use case ends.

Extension points:
+ Checking Product Availability: Step 4

UC Modify the Restock Plan

Alternate Flow: Modify the Restock Plan

|

e Checking Product Availability extension point of the Place an
er use case:

Jtep 4:

1. System checks the available quantity of the product being ordered.
2. If the quantity is below the limit, System adds the quantity under
demand to the restock plan.

3. The flow continues with the step that follows the triggering

@ prez extension point. Example taken from: http://wwwa2.fiit.stu

public class Ordering §

Object-Orien
publicvoidorder0 { IMplementati

new ProductSearch().search(product);
if (productAvailable(product)) {

}else...

Example taken from: http://www2.fiit.stuba.sk/~vranic/

public class Ordering {

;;Lb-l.i-c void order() { AS p eCt s O ri e n te

new ProductSearch().search(product);

C— Implementatio

}else...

public aspect RestockPlan {

void around(Product product):
call(* Ordering.productAvailable(..) && args(tovar) {

// increase the quantity in the restock plan

iPrezi

! Example taken from: http://wwwa2.fiit.stuba.

Use Cases Preserved in Cod

Thanks to Aspe

Symmetric Aspect-Oriented Modularization

Peer Use Cases

()

|

Use Case Extending An
Asymmetric Aspect-Oriented Mod

OORam: Object-Oriented Ro

Analysis And Modeling
ROLE MODELS Designed for reuse

= Permits inheritance of » Synthesis + Ensemble of classes designed for
object properties

-beneficially applicable KEY ABSTRACTIONS

in context of frameworks
- Common class abstraction

=> permits inheritance of (can be perceived as entity relation modelling)

system properties:
; - Type abstraction

-behavior
-constraints (interfaces, externa properties of objects)

OBJECT-ORIENTATION) Role abstraction
(structure and activities in patterns of in

Representation as

Structure of Source: Reenskaug, Trygve; P. Wold; O. A. Lehne (199
Interacting objects The OOram Software Engineering Method. Manning/

OORam: Object-Oriented Ro
Analysis And Modeling

» Developed by Trygve Reenskaug (MVC pattern), Taskon

» To describe complex software systems (software product lines fall within this
category)

» For requirements supporting rapid construction of specialized software

Capturing the synergy of particular pattern of the interdependent parts
their value (the value of a system) is greater
than the sum of the values of its (interdependent) parts

Abstractions for Concerns

Separation and Reuse

Type abstraction

(interfaces, externa properties of objects)

‘ The type or interface is Interface
—>| Number
the what abstraction +-*/ umbe
The class is The role is
the how abstraction the why abstraction
Number Collaboration aNumﬂrﬂth
Inheritance A\ C .
aFraction
aDanomina@
Integer Real

=)

¥

Common class abstraction

Figure 3. Three abstractions

(can be perceived as entity relation modelling)

Role abstraction
(structure and acti
in patterns of intera
objects)

Source: Reenskau
Wold; O. A. Lehn
with Objects: T,
Engineering
Manning/P

Abstractions for Concerns
Separation and Reuse

Type abstraction
Type

= Implementation-interdependent description of a set of objects
- which share external properties (set of messages to understand)

-organized in type hierarchy
subtype < - supertype

Liskov’ Principle: all properties
inherited/exhibits all messages
+ introduces new one

Reusable interfaces - used to expose functionality of components

= Reusable components (encapsulated + hidden implementation details
— applicable in different contexts

Abstractions for Concerns
Separation and Reuse

Class abstraction

Class

= A set of objects sharing common implementation

-meaning in programming:
-program controlling class instances == the properties of a set of objects

- allows to share concepts of code + supports reusable code
-organized in class hierarchy

subclass < - superclass
Liskov’ Principle: all code inherited/exhibits all messages
+ introduces or modified new methods and object Source: Reensk
variables Wold; O. A. Le
Reusable class libraries with Objectsy
Engineeri

= Reuse through application of classes Mannin

Abstractions for Concerns soue:

Wold: O.

Separation and Reuse uith Ot

Manning/Pren

Role abstraction | | | |
Describes all static and dynamic properties of framewo

Use Cases = Activities = Functionality realized by

o patterns of collaborating objec
Activity

= Task conducted by set of associated and cooperating objects
In Role model

= Object identity is preserved => Object interaction patterns are preserved

- each role represents single object doing certain activities
- such role represents only related object properties to these activities

In Role model
Role - describes how patterns of objects perform specific task

= Partial description/specification of corresponding object
[, partial description of corresponding class]

Abstractions for Concerns
Separation and Reuse

Understanding complex systems
-good to separate concerns - I
DIVIDE AND CONQUER
‘v . SELECTING DESCRIBIN
ROle mOdel Syn theS’S Area of concern => objects p.layin roles

. . within its cont
System derivation:
Composition from base systems

CONTROLLABLY PRESERVING OBJECT Source: Reenskaug,

PATTERNS AND ACTIVITIES 2 Lelne (1990),

-> SYNTHESIZING REUSABLE COMPONENTS Method. Mann|

-too complex whole

I n te rd e pe n d e n Ci es Source: Reenskaug, Trygve;

(1996). Working with Objects:
Engineering Method. Manning

betwee n S u bj eCtS Managed subject interdependen

As Integration of each object behavior when playing multi

(} D_CD Caller (A-Party) POTS Service
)
_J

Called (B-Party) POTS Servic:

D
@ Service Invocation
[\
_/

As role
models

Subjects

Switching

Each plays Objects Not bound
one or more roles Figure 6. Subjects and objects single mo

-to show static and dynamic properties of the system

1. Collaboration View

-
\
Client I Invocation Service
i T — /
InvocationRequ es‘_‘
{service, aParrg# — . . .
s 2. Scenario View

InvokeService >

Connect -

{A-party, B-party, ConnPpintld)
Service >
Shutdown

DN BN B oot (a-party, Boparty, ConnPointid))

Figure 8. Basic Invocation Framework

Source: Reenskaug, Trygve; P. Wold; O. A. Lehne
(1996). Working with Objects: The OOram Software
Engineering Method. Manning/Prentice Hall.

Invocation

Figure 7. Basic Invocation Framework

. Docomentsc 3. Method View Caer

Service

Find the B-service

provided by the called
party.

Ask called party for call

InvocationRequest ‘

Connect (A-party, B-

Bervice, aParty)

Called

Invocation POTS

Service

arty, ConnPointld) >

completion.

Figure 9. Sample Method. Establish communication with called party.

Source: Reenskaug,

Co l la bo rati on V'i ew Lehne (1996). Workin

OOram Software Engi
-collaboration structure incorporating system roles Manning/Prentice Hall.

Example: Each user has own instance of Invocation role

Consists of 1. Roles | ,
=> superellipse Holds user set of available servi

holds the user set of services
2. Communication
structure '

Invocation

1. Selects and Initializes Servic
2. Gives Service reference to th

Invocation is capable t
respond on clien
request with Service obj

Communication path => line

-
Port to send messages => small /
\
Role can send messages ~———~- /
with its collaborator

. .) Figure 7. Basic Invocation Framework
Many relation => circle with

concentric circle
. . . Port ,
Example: invocation can handle many clients — Abstracti

rchetypical role => dashed line Example: archetypical client possible

Scenario View

-interaction of messages as trace of system activity

RO Ies Client Invocation Service
-horizontally

InvocationRe u
Message / s ‘gﬁ:ﬁk risves
. . available

Interactions InvokeService

-horizontal arrows \
Connect -

(from sender role (A-party, B-party, ConnPpintid) -

. ervice
to receiver) Shutdown >

Disconnected
' Source: Reenska

I D Wty

with Obijects:
Engineeri

Figure 8. Basic Invocation Framework Mannin

Method View

-to perceive how received message is handled by particular role

Example: establishing connection with POTS Service:

Sent messages
=> Explicitly shown

Caller
POTS
Service

>

Connect (A-party, B-party, ConnPointld)
Internal

InvocationReq uest‘

Find the B-service
d provided by the called
party.
operations

Ask called party for call
completion.

=> pseudocode s

Connect (A-party, B-

Called
Invocation POTS
Service

service, aHarty)

arty, ConnPointld) N

Figure 9. Sample Method.: Establish communication with called party.

Source: Reenskaug, Try
Wold; O. A. Lehne (19
with Objects: The
Engineering Met
Manning/Prenti

Role Model Synthesis

A

C D_C D C D g::ifg Tickets
(
—

e
As role _E (,' ' Travel Manage
models =

) ') ' Planni
Role in one model plays C _J | _J | D anning

environment role in another

Each plays one or more roles - Objects
Figure 10. This 'hat stand' synthesis illustration is due to Philip Dellaferra.

Source: Reenskaug, Trygve; P
(1996). Working with Objec
Engineering Method. Ma

. e SINGLE SYNT_
Synthesizing Reusable o) -rrows:

mapping
Components alizatior R G
P 1. Specialization el
Example: composite fraction - generalization
) : : General concept is specialized
double synthesis of fraction model (inheritance) in derived model aVoltage
aNumerator Example: fraction -> Ohm’s law aCurrent
ST aResistancB
arrac

‘ - -all properties +new features
(static dynamic) Figure 11. Specializing a general concept with synthesis.
v are preserved
‘ 2. Composition - on the
'\. same abstraction level

-composition of related models into
\ composite derived model
aFraction2 ‘
aDenominat@ Source: Reenskaug, Trygve; P
(1996). Working with Objec
Engineering Method. Ma

' aFraction1

aNumerator2

Fioure 12. Composition on same level of abstraction.

Synthesizing
Reusable

CO m pon ents GFractiom
3. Aggregation

-encapsulation - invisibility of internal construction
from the outside

- ENABLES REUSE - Application to different contexts

Replacement

1. SIMPLE ROLE -> ROLE ENCAPSULATING

SEPARATE ROLE
STRUCTURE

ample:
numerator role ->

Source: Reenskaug, Trygve;
(1996). Working with Objects:
Engineering Method. Manning/

. \
The same as composition from

previous example, but ENC

role encapsulating another
instance of fraction model

Previously:
numerator role

aNumeratorﬁ'
aDenominatog

aNumerat@
m:minatoﬂ

aFraction2

Figure 13. Aggregation

= INVISIBLE T
(aFRACT

Seamless Brigade to
I m p le m e n tati O n Constructing product classes

by subclassing the framework classes

ABSTRACTIONS
related through Many-to-many
common concepts relationships
of objects Role Type
(Why) (What)
N/ N/
AN AN
Class
(How)

Figure 14. Semantic model of Role - Type - Class

Application: OOram

An OOram Framework is an encapsulated
solution to a recurring problem.

It consists of
- Role models describing the static and dynamic properties of the
solution
- The role models are designed for specialization through synthesis.
- A corresponding ensemble of coordinated classes
- The classes are designed for specialization through subclassing.

Source: Reenskaug, Trygve; P
(1996). Working with Object
Engineering Method. Man

Application: OOram

1. Synthesis 1: Mapping to corresponding model - SPECIALIZATION
Default behavior of base model is preserved

Synthesis

1. Synthesis 2: Mapping to corresponding model - S

—————

Figure 15. Synthesize POTS from reusable base models \

Example: accessing caller POTS by Caller

Example: accessing called POTS service
(user service) by caller POTS

Figure 16. Repeat to synthesize B-side

Reusing Default Behavior
Through Specialization

!
| Client Invocation Service " C:ger) g?)".?é g?l)l:fg InvocEtion
1' L Service Service

Invuc;atmnReque InvocatlonRequest ~
(service, aParty) (service, aParty)
eck |f service > VR W
available g LYOREDETVICD
InvokeService - Connect
(A-party, B-party, Conrﬁmntld)

Connect > InvocationRequest >
{A-party, B-party, ConnPpintld) (service, aParty)

Service > | ¢InvokeService

Shutdown

> Disconnected Connect
(A-party, B-party, Conrﬁomtld)

Figure 8. Basic Invocation Framework — ITigure 17. Sample Scenario: Open POTS Telephone Service

Application: OOram
Incorporating Call Forward Se

Source:

(Producer @7({ ltem M Consumer)
\ it pr \ co it \
\

\ \ 3\
Gob Offer Produce@ —Ci(Job Off p—@]ob Offer Consumen
_

er
jo jop Pr9 joc jo
Qo

it

é

C Prerequisite){

{

Part

)

Elements in themes can be perceived as roles. Roles are known fro

Object-Oriented Role Analysis and Modeling (OOram)

Elements in themes can be perceived as roles.

mm) Perceiving Aspects as
Role Collaborations

@ w Caller (A-Party) POTS Service

_
Concerns/Themes/ C_ Y {) catied (5-Pary) POTS Servic

= l Service Invocation

Switching

C) D C)
/S S S S S
Each plays Objects /Elements in themes
one or more roles Figure 6. Subjects and objects

mm) Perceiving Aspects as
Role Collaborations

TRANSFORMATION FROM THEME/UML TO OORAM
Elements in themes can be perceived as

View as role

Decomposing whole to units covered by specific aspect or view. ource: Vranic, V., Laslop, M.
Roles in Software Modeling:

Role extending object functionality: A Composition Based Comparis
Science and Information System

. o Vol. 13, No. 1, 199-216. (2016),
-perform corresponding functionality https://doi.org/10.2298/CSIS15

-take effect into inherent structure

Extensions to object- ‘ Role based approaches to software

oriented programming
s Aspect-oriented programming

Both have capability to be added, removed and replaced at runtime

-to be applied in other contexts

Theme/UML And OOram
Re lati o n S Table 1. The corresponding notions in Theme/UML and OOram.

Source: Vrani¢, V., Laslop,
M.: Aspects and Roles in
Software Modeling:

A Composition Based
Comparison. Computer
Science and Information
Systems,

Vol. 13, No. 1, 199-216.
(2016),
https://doi.org/10.2298/CSIS1
51207065V

Theme/UML OOram

theme collaboration of roles
parameter class 1n an aspect theme role

non-parameter class in an aspect theme role

class

class fragment

operation

bind

base theme

aspect theme

concept sharing

crosscutting

decomposition: theme creation
composition: composing themes
structural diagram (class diagram)
behavioral diagram (sequence diagram)

role or collaboration of roles

role

interface method

two roles relationship

collaboration view diagram
collaboration view diagram

role sharing in the collaboration diagram
relationship between two roles
decomposition: role model creation
synthesis: composing role diagrams
collaboration/interface view diagram
scenario view diagram

Theme/UM| mm==

ProductDB sd addProduct /

|
.a_d#md uct() |
Product '

I P
- pnc\e . Currenw : d’lEﬂkﬂvEﬂabIhWﬂ #:

+ getPrice() : Currency I |
+ checkAvailability{product : Product) : Boolean

(g | sd confirm

Order :Order

? :Order ‘Product

- price : Currency '

+ addProduct(product : Product; quantity : Integer) .erm[]
+ removeProduct{product : Product) J
+ calculatePrice() : Currency Dﬂﬂlﬂmatﬂpﬁﬂﬂﬂ
+ confirm() I

Fig. 1. A base theme.

Theme/UML

«theme» BonusProviding R

BonusReguester :BonusRequester ‘BonusDB
+op() op(ly, | '

+ provideBonus()

./ _do_op()

| bonusAvailable()
|

BonusDB alt [bonus available] /
+ bonusAvailable(type : String) : Boolean pprmrideﬂcnuaﬂ
[

——em — ——— — = — — — — —

Fig. 2. An aspect theme.

gtheme» BonusProviding -
1

wtheme» OrderProcessing

ProductDB sd addProduct sd op
? :Order ‘Product BonusRequester ‘BonusRequester ‘BonusDB
' ! + op() | |
o
@:cpproductd + provideBonus()
Product |) _do_op()

- price : Currency
+ getPrice() : Currency
+ checkAvailability(product : Product) : Boolean

|
|

checkAvailability() ,'_I .
| | bonusAvailable()
|

sd confirm rd BonusDB

+ bonusAvailable(type : String) : Boolean ppmuideEcnus{}
Onder | Order |

w

- price : Currency

|

|

|

|

|

f f
alt [bonug available] / |
|

|

|

|

|

|

cogfirm
+ addProduct(product : Product; quantity : Integer)| 0
+ removeProduct(product : Product) !
+ calculatePrice() : Currency DcalculaleF’rice()

+ confirm() 1

Fig. 2. An aspect theme.

Fig. 1. A base theme.

«theme» BonusProviding - —

Source: Vrani¢, V., Laslop, M.: Aspects

. . S - __
and Roles in Software Modeling: bind[<Order {addRroduct(), confirm()}, Order.addProduct()>]
A Composition Based Comparison. N
Computer Science and Information N
«theme» OrderProcessing N

Systems,
Vol. 13, No. 1, 199-216. (2016),
https://doi.org/10.2298/CSIS151207065V

Fig. 3. A composition of an aspect theme with a base theme.

atheme» Product |

ThemeName("ProductDBManagement")
——

—_—
—

/ T —
/ I

!

%

atheme» ProductDB

ProductDB

+ addProduct{product : Product)
+ removeProduct|{product : Product)

Product

‘ Producer \

Product
- name: String
- price : Currency
+ getName() : String
+ setName(name: String)

+ getPrice() : Currency
+ setSet(name: Currency)

{

Image

Fig. 5. A composition of two base themes.

Source: Vrani¢, V., Laslop, M.: Aspects and Roles in Software Modeling:
A Composition Based Comparison. Computer Science and Information Systems,
Vol. 13, No. 1, 199-216. (2016), https://doi.org/10.2298/CSIS151207065V

sd addProduct

:Order :Product :BonusDB
.@ﬁmduct) : :
: checkAvailability() » |
: bonusﬁdﬂilahlef} .;:
| 1 I
alt [br.ltnus available]) I |
I I
I;)addPrnduct{} [I
I I
I T 1
| I I
| 1 I
Fig. 4. The addProduct() operation as affected by BonusProviding.
«themes» ProductDEManagement ‘
ProductDB Fr-I::duct
- name: String

+ addProduct(product : Product)
+ removeProduct(product : Product)

- price : Currency

+ getName() : String

+ setName(name: String)
+ getPrice() : Currency

+ setSet{name: Currency)

7

Image

Producer

Fig. 6. A composed theme.

O O r a m (ProductDB %@ Product

(_ Product<Order w é Order<OrderClient N

getPrice addProduct
checkAvailability removeProduct

calculatePrice
\confirm J

Fig.7. An OOram interface view diagram. OrderProcessing

ProductDB p

ProductDB)/ pd

-

7 OrderClient_>

N o ST
nusDB

A

OrderProcessingWithBon

s
urce: Vranié, V., Laslop, M.: Aspects and Roles in Software Modeling: BonusProviding 2~
Composition Based Comparison. Computer Science and Information Systemf

l. 13, No. 1, 199-216. (2016), https://doi.org/10.2298/CSIS151207065V

Fig. 8. Synthesis of role models.

OOram e VA

) e -

. OrderClient_>

i

e —

Source: Vrani¢, V., Laslop, M.: Aspects o M
and Roles in Software Modeling: Ufﬂﬂf“‘fﬂﬂﬁss'ngwlm/&;/

A Composition Based Comparison. / BonusProviding /
N

Computer Science and Information C - -
Systems (EunusRequaster log 7~ BonusDB)
Vol. 13, No. 1, 199-216. (2016),

https://doi.org/10.2298/CSIS151207065V

Fig. 8. Synthesis of role models.

Extension points are introduced
explicitly.

Does this break the obliviousness of
aspects on the side of the affected
code?

Source: http://wwwz2.fiit.stuba.sk/~vranic/

Extension points are introduced
explicitly.

Does this break the obliviousness of
aspects on the side of the affected \

Source: http://wwwz2.fiit.stuba.sk/~vranic/

code?

Are preserved use cases in code
Is traceability enough?

References

>

OOram: Reenskaug, Trygve; P. Wold; O. A. Lehne (1996). Working with Objects: The OOr
Engineering Method. Manning/Prentice Hall.

Use Cases: Cockburn, A.. Writing Effective Use Cases.Addison-Wesley, 2001

Abstractions analogies in patterns: J. Hannemann and G. Kiczales, “Design pattern implement
Java and AspectJ,” in Proc. of 17th ACM SIGPLAN Conference on Object-Oriented Programming,
Languages, and Applications, OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161-173.

Application of Themes approach: Ec. Pavol Michalco: PRIPADY POUZITIA A TEMY V PRISTUP
THEME/DOC

D. Stein. Join Point Designation Diagrams: A Visual Design Notation for Join Point Selection
Aspect-Oriented Software Development. PhD. thesis, Universitat Duisburg-Essen, 2010.

E. Baniassad and S. Clarke, "Theme: an approach for aspect-oriented analysis and
design,’ Proceedings. 26th International Conference on Software Engineering, Edinbur
2004, pp. 158-167, doi: 10.1109/ICSE.2004.1317438.

Vrani¢, V., Laslop, M.: Aspects and Roles in Software Modeling: A Composition Based Comparison.
Science and Information Systems, Vol. 13, No. 1, 199-216. (2016), https://doi.org/10.2298/CSIS15

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf
https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf
https://duepublico2.uni-due.de/receive/duepublico_mods_00024134
https://archive.org/details/aspectorientedan0000clar
https://archive.org/details/aspectorientedan0000clar

References

» Bystricky, M., Vranic, V.: Preserving use case flows in source code. In: Proceedings o
4th East- *~ ern European Regional Conference on the Engineering of Computer Based
Systems, ECBSEERC 2015. IEEE, Brno, Czech Republic (2015)

» Hanenberg, S., Stein, D., Unland, R.: Roles from an aspect-oriented perspective. In:
Proceedings of VAR’05: Views, Aspects and Roles Workshop, ECOOP 2005. Glasgow, UK
(2005)

» Hanenberg, S., Unland, R.: Roles and aspects: Similarities, differencies, and synergetic
potential. In: Proceedings of 8th International Conference on Object-Oriented
Information Systems, OOIS 2002. Montpellier, France (Sep 2002)

» Reenskaug, T., Coplien, J.O.: The DCI architecture: A new vision of object-oriented
programming. http://www.artima.com/articles/dci_vision.html (3 2009)

Aspects And Roles

a) Unification of aspects and roles
b) Modeling aspects with roles

c) Role systems as special kind of aspect-oriented systems

d) Similarities between role based and aspect-oriented system composition/decompositio

Theme/UML and OOram -> COMPOSITION PATTERNS

Symmetries

AspectJ - asymmetric

a) Element symmetry b) Relationship asy

	Snímka 1: Aspects And Use Cases
	Snímka 2
	Snímka 3: AOSD via Use Cases
	Snímka 4
	Snímka 5
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10: Peer Use Cases
	Snímka 11
	Snímka 12: Dynamically extending class
	Snímka 13: Solution to Peer Use Cases: Intertype Declaration
	Snímka 14
	Snímka 15
	Snímka 16: Are Use Cases and Themes the Same?
	Snímka 17: Example: Store Management - Requirements
	Snímka 18: Themes/DOC - Views
	Snímka 19: Transformation from Theme UML to Use Cases
	Snímka 20
	Snímka 21
	Snímka 22
	Snímka 23
	Snímka 24
	Snímka 25: ThemesUse Cases -generalization
	Snímka 26: Transformation From Use Cases to Themes/UML
	Snímka 27: Equivalence
	Snímka 28: Handling Include Relationship From Use Cases
	Snímka 29
	Snímka 30
	Snímka 31
	Snímka 32
	Snímka 33
	Snímka 34
	Snímka 35
	Snímka 36: Peer Use Cases
	Snímka 37: OORam: Object-Oriented Role Analysis And Modeling
	Snímka 38
	Snímka 39: Abstractions for Concerns Separation and Reuse
	Snímka 40: Abstractions for Concerns Separation and Reuse
	Snímka 41: Abstractions for Concerns Separation and Reuse
	Snímka 42: Abstractions for Concerns Separation and Reuse
	Snímka 43: Abstractions for Concerns Separation and Reuse
	Snímka 44: Interdependencies between subjects
	Snímka 45: Many View of One Model
	Snímka 46: Collaboration View
	Snímka 47: Scenario View
	Snímka 48: Method View
	Snímka 49: Role Model Synthesis
	Snímka 50: Synthesizing Reusable Components
	Snímka 51
	Snímka 52: Seamless Brigade to Implementation
	Snímka 53: Application: OOram
	Snímka 54: Application: OOram
	Snímka 55: Reusing Default Behavior Through Specialization
	Snímka 56: Application: OOram
	Snímka 57
	Snímka 58: Perceiving Aspects as Role Collaborations
	Snímka 59
	Snímka 60: Theme/UML And OOram Relations
	Snímka 61
	Snímka 62
	Snímka 63
	Snímka 64
	Snímka 65
	Snímka 66
	Snímka 67
	Snímka 68
	Snímka 69: References
	Snímka 70: References
	Snímka 71: Aspects And Roles
	Snímka 72: Symmetries

